Carrie GPS

Sunday, 3 May 2009

Internet-HDTV Wiring Requirements

Prior to the Internet revolution, buildings usually had two wiring systems, the electrical service and the phone service. When computer networks were required, phone lines were the only means available for data transmission. The original networks that were created for computers to share data simply piggybacked over existing connections and technology.

Today, more options are available (and needed) to meet the networking needs of consumers. A good rule when projecting the future of communications: whatever you can imagine for the future, and multiply that by ten. Who twenty years ago could have predicted the Internet or HDTV or cell phones or IPODs. And given that technology growth in communications has proven to be exponential in the past, we need to multiply that experience by a factor of ten for the next twenty years.

When dealing with the design and construction of a new facility, it is important to identify needs early in the process. When renovating an existing facility, many of the same considerations should be addressed, and the task is often more challenging.

Structured Wire

Structured wire is a technology of electrical interconnect, and is rapidly becoming standard in many parts of the U.S. The products try to anticipate future needs, and provide standardized methods for implementation. A Structured Wire facility includes telephone, computer networking, video, and sometimes fiber optic facilities. Structured Wiring Service Panels are usually about 4' high by 4' wide and are installed in a service area such as a garage, attic, or basement. The Structured Wiring is most often installed in new construction, but it can be utilized in existing structures.

The Structured Wiring Service Panels for a structured wire installation is a central panel where services (cable TV, telephone, satellite, internet, etc.) enter the house. A minimum requirement for each panel is a telephone-connecting block for terminating the twisted pair, and a passive cable splitter for the coax. Room should be left in the panel for upgrades.

Although individual Ethernet and video cables can be used, specifically designed multimedia cables are becoming standard. A dual cable, for example, consists of one Ethernet and one video interconnect under a single jacket. Another composite construction could include 2 Ethernet cables for voice and data and 2 video cables. These multimedia cables speed the installation time because multiple cables can be pulled at the same time, and it minimizes termination times since all ends are identifiable.

Ideally, the wired network has a "home run" configuration: a separate interconnect for cable TV, phone, and Internet data transmission is made from the Structured Wiring Service Panel to every point of use.

Structured Wiring panels are used to provide the miles of cable interconnects required to distribute Audio, television, security camera video, telephone, and digital communication applications, and now combines it with multimedia facilities. Structured wiring works well with a wireless network because administrators can connect wireless access points throughout the house through an Ethernet connection.

Computer Networks

The right technology choice is driven by what kind of property is being serviced. In a good communications interconnect plan, all interconnects are run to a central location. It may be OK to run a phone line in series (room to room), but it is not OK for Internet network cables.

Technology changes fast.

  • It was only twenty-five years ago that Steven Jobs said that no computer would ever need more than 64K of memory.

It is important to future-proof your plans. Fiber-optic solutions seem to be an unnecessary luxury today, especially with the performance available with high speed Ethernet. However, the majority of technology solutions for residential and small business applications are currently based on Ethernet.

Wireless networking (WiFi) is another technology that is rapidly impacting computer networking. Market research firm IDC projects that the total number of enterprise WiFi access points installed will grow from 1.6 million units in 2006 to 11.5 million units by 2010. Up to 20 users can connect to a single WLAN access point and receive adequate service. IDC also predicts that Ethernet switch ports, those predominantly deployed in enterprises, will grow from 172 million units to 208 million units in the same period.

Ethernet

Ethernet is the dominant standard for hardwire data networking. Ethernet hardware is usually standard in all new computers. If the method for high-speed data (cable modem, DSL, etc.) is hardwire, then the interface to the computer will usually be an Ethernet port.

Ethernet interconnections should not exceed 100 meters, and separate cables are needed for data and phone. It is possible to run Ethernet in the same jacket as phone, but it can be unreliable, and is definitely not advisable for High Speed Ethernet (> 100 Mbps). Use a separate cable, the "home-run" design, where possible from the network switch to each point of use.

With new construction, it is also advisable to interconnect buildings with conduit. Install it in the ground while it's still cheap to do so, and, keep the ownership rights. This will future-proof the property for later upgrades.

Retrofit Strategies

There are two common methods for retrofitting buildings: Wireless and Ethernet. Wireless has the apparent advantage of being less expensive and easier to implement, especially for retrofits. However, this is not always the case. Today, the answer is probably a combination of both systems. At points of use that are obvious and static, for example the home office, an Ethernet connection is appropriate. Overlaying this system with a wireless (WiFi) network provides improved flexibility.

Wireless

Wireless Ethernet (802.11) can be a good choice for communication retrofits for small projects. WiFi operates on radio frequencies (RF) and was developed for wireless digital communication between personal computers and consumer electronic devices. Most new computers include built-in WiFi support. Wireless Ethernet has applications including large buildings. Wireless access within common areas of a property, such as a pool area, can be an elegant solution. Wireless also is an excellent choice where it is difficult to run additional wire.

Hardwire

In some situations, rewiring can make more sense. For larger projects, a hard wire approach is more reliable, and in the end, cheaper. Wireless looks good "on paper", but in a large building, universal connectivity is difficult. The average cost to rewire with Ethernet cable is about $300 per point of use in large buildings. Having infrastructure in place for future expansion may justify the expense of rewiring.

Environmental issues must be considered when rewiring. Issues such as asbestos and lead-paint abatement are examples. There are those applications where rewiring is not an option because of construction constraints, unless exterior conduit is used, and esthetics often preclude this option. Once the wiring is installed, implementing the network is straightforward using standard Ethernet hub or switch equipment. Remember that there is a 100 meter distance limitation with Ethernet. In large projects, locating Ethernet switches in each building or on each floor of a high rise resolves the issue.

Fiber Optic vs. Ethernet

Fiber is probably not the solution to deploy today given Ethernet's ability to handle high speed communication over the short distances typical of large buildings. But it is difficult to anticipate the future. Fiber optic cables are used instead of traditional copper cables because this technique offers more capacity and is less susceptible to electrical interference. Fiber optic is becoming more common as a way to provide very high speed Internet service (100 Mbps and higher).

Uncompressed HDTV

If you want to distribute uncompressed video, say from the output of a satellite or cable receiver, then the bandwidth requirements are significant. The alternative would be to distribute the compressed signal, and install a receiver (with decompression) at each point of use. If you are in the first camp, read on, otherwise you can skip forward to the next section.

Today's video installations grow ever more complex, with source components positioned a good distance away from the display. The distance is the biggest factor in determining which technology to use. There are two choices, Copper or Fiber Optic.

An uncompressed digital video signal is a challenge. Fiber optic interconnect is the best technique for DVI and HDMI, because of the enormous bandwidth available. The bandwidth of Ethernet is less than 0.6 Gbps, and this is much lower than uncompressed video data (1.65 Gbps), it is easy to understand why fiber optic is better when it comes to high bandwidth digital signal transfer for long cable runs. Typically, 1080p signal would mean 1920 x 1080 pixels at 60 Hz. At this high rate of speed and large bandwidth of data, the impedance of many copper cables can cause signal loss at less than 20 feet, and this results in significant distortion.

Interconnect reliability over time should also be considered. The optical conversion electronics should last at least 80,000 hrs of continuous operation. Fiber optic cables are immune to electrical interference such as gadio frequency interference (RFI). With Fiber Optic Conversion technology, there is zero impedance (zero loss during transmission).

Summary

High quality interconnect is an investment. As digital video technology improves, you may be upgrading your DVD player or TV and it is important to make sure your interconnects do not become obsolete. Utilize a technology good to at least 1080p. Fiber Optics may be more expensive, but the price differential may be worth consideration for future-proofing your system now.

The goal is to deliver a cost-effective, future-proof deployment. It is more expensive and difficult to retrofit later. Inexpensive computing, the Internet, and digital communications are transforming the our planet. Twenty years of stunningly rapid advances in technology have brought computing into businesses and homes in ways that were recently not imagined.

About the Author: Brian Bradshaw is a Certified Technical Specialist (InfoComm CTS). Areas of expertise include Video, Audio, Computation, WiFi, HDTV, Satellite Systems, and Communications. He has a communications technology business that serves the Southwestern United States with offices in Plano, Texas (Dallas) and an office in Peoria, Arizona (Phoenix), managed by his brother, Keller Bradshaw.

Please visit the Website for more information

Garmin 760 Best Price
Canon SD1100 Sale
Flip Mino Best Price

No comments:

Post a Comment

Blog Archive

Carrie GPS

Welcome to Carrie GPS